Write your name here		
Surname	Other na	mes
Pearson Edexcel GCE	Centre Number	Candidate Number
Core Mat Advanced Subsid		s C2
Wednesday 25 May 2010 Time: 1 hour 30 minute	•	Paper Reference 6664/01
You must have:		Total Marks

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

1.	A geometric series has first term <i>a</i> and common ratio $r = \frac{3}{4}$.	
	The sum of the first 4 terms of this series is 175.	
	(a) Show that $a = 64$.	(2)
	(<i>b</i>) Find the sum to infinity of the series.	(2)
	(c) Find the difference between the 9th and 10th terms of the series. Give your answer to 3 decimal places.	(-)
		(3)
		(Total 7 marks)

2. The curve *C* has equation

$$y = 8 - 2^{x-1}, \qquad 0 \le x \le 4.$$

(a) Complete the table below with the value of y corresponding to x = 1

x	0	1	2	3	4
У	7.5		6	4	0

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for $\int_{0}^{4} (8-2^{x-1}) dx$.

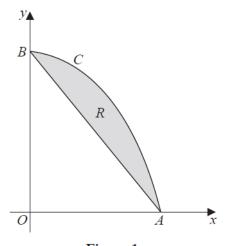
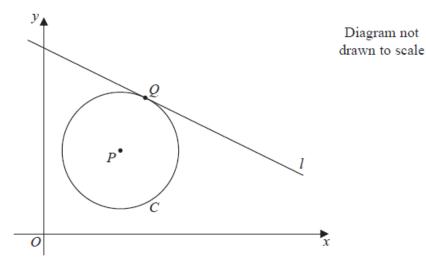


Figure 1

Figure 1 shows a sketch of the curve *C* with equation $y = 8 - 2^{x-1}$, $0 \le x \le 4$.

The curve C meets the x-axis at the point A and meets the y-axis at the point B.

The region R, shown shaded in Figure 1, is bounded by the curve C and the straight line through A and B.


(c) Use your answer to part (b) to find an approximate value for the area of R.

(2)

(1)

(3)

(Total 6 marks)

The circle C has centre P(7, 8) and passes through the point Q(10, 13), as shown in Figure 2.

(a) Find the length PQ, giving your answer as an exact value.

(2)

(2)

(b) Hence write down an equation for C.

The line *l* is a tangent to *C* at the point *Q*, as shown in Figure 2.

(c) Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

(Total 8 marks)

 $f(x) = 6x^3 + 13x^2 - 4$

	(Total 8 m	arks)
(c)	Factorise $f(x)$ completely.	(4)
(<i>b</i>)	Use the factor theorem to show that $(x + 2)$ is a factor of $f(x)$.	(2)
		(2)
(<i>a</i>)	Use the remainder theorem to find the remainder when $f(x)$ is divided by $(2x + 3)$.	(

4.

5. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

 $(2-9x)^4$,

giving each term in its simplest form.

 $f(x) = (1 + kx)(2 - 9x)^4$, where k is a constant.

The expansion, in ascending powers of x, of f(x) up to and including the term in x^2 is

$$A - 232x + Bx^2,$$

where A and B are constants.

(b) Write down the value of A.

(c) Find the value of k.

(d) Hence find the value of B.

(2)

(1)

(2)

(Total 9 marks)

6. (i) Solve, for $-\pi < \theta \le \pi$,

$$1 - 2\cos\left(\theta - \frac{\pi}{5}\right) = 0,$$

giving your answers in terms of π .

(ii) Solve, for
$$0 \le x < 360^\circ$$
,

$$4\cos^2 x + 7\sin x - 2 = 0,$$

giving your answers to one decimal place.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(6)

(Total 9 marks)

(4)

(3)



Figure 3 shows a sketch of part of the curve with equation

$$y = 3x - x^{\frac{3}{2}} \qquad x \ge 0 \,.$$

The finite region *S*, bounded by the *x*-axis and the curve, is shown shaded in Figure 3.

•

(a) Find

$$\int \left(3x - x^{\frac{3}{2}}\right) \mathrm{d}x \,. \tag{3}$$

(*b*) Hence find the area of *S*.

(3)

(Total 6 marks)

8 (i) Given that

$$\log_3(3b+1) - \log_3(a-2) = -1, \qquad a > 2,$$

express *b* in terms of *a*.

(ii) Solve the equation

$$2^{2x+5} - 7(2^x) = 0,$$

giving your answer to 2 decimal places.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

6

(4)

(Total 7 marks)

~

(3)

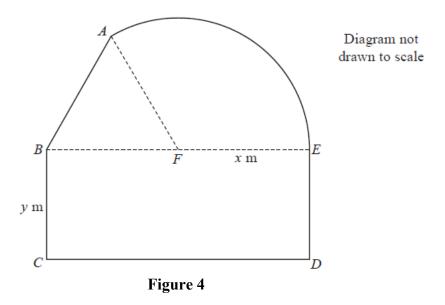


Figure 4 shows a plan view of a sheep enclosure.

The enclosure *ABCDEA*, as shown in Figure 4, consists of a rectangle *BCDE* joined to an equilateral triangle *BFA* and a sector *FEA* of a circle with radius x metres and centre F.

The points *B*, *F* and *E* lie on a straight line with FE = x metres and $10 \le x \le 25$.

(a) Find, in m^2 , the exact area of the sector *FEA*, giving your answer in terms of x, in its simplest form.

Given that BC = y metres, where y > 0, and the area of the enclosure is 1000 m²,

(*b*) show that

$$y = \frac{500}{x} - \frac{x}{24} \left(4\pi + 3\sqrt{3} \right).$$
(3)

(c) Hence show that the perimeter P metres of the enclosure is given by

$$P = \frac{1000}{x} - \frac{x}{12} \left(4\pi + 36 - 3\sqrt{3} \right).$$
(3)

(d) Use calculus to find the minimum value of P, giving your answer to the nearest metre.

(5)

(2)

(e) Justify, by further differentiation, that the value of P you have found is a minimum.

(2)

(Total 15 marks)

TOTAL FOR PAPER: 75 MARKS

Question Number	Scheme	Marks
1. (a)	$\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-\frac{3}{4}^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-0.75^{4}\right)}{1-0.75}$	M1
	$175 = \frac{a\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \implies a = \frac{175\left(1 - \frac{3}{4}\right)}{\left(1 - \left(\frac{3}{4}\right)^4\right)} \left\{ \Rightarrow a = \frac{\left(\frac{175}{4}\right)}{\left(\frac{175}{256}\right)} \Rightarrow \right\} \ \underline{a = 64} *$	A1*
		[2]
(b)	$\{S_{\infty}\} = \frac{64}{\left(1 - \frac{3}{4}\right)}; = 256$	M1;
	$\left(1-\frac{5}{4}\right)$	A1 cao
		[2]
(c)	$\{D = T = T = \} 64\left(\frac{3}{2}\right)^8 = 64\left(\frac{3}{2}\right)^9$	M1
(0)	$(D - I_9) - I_{10} - (-1) - $	dM1
	$\left\{ D = T_9 - T_{10} = \right\} \ 64 \left(\frac{3}{4}\right)^8 - 64 \left(\frac{3}{4}\right)^9$ $\left\{ = 64 \left(\frac{3}{4}\right)^8 \left(\frac{1}{4}\right) = 1.6018066 \right\} = \underline{1.602} \ (3 \mathrm{dp})$	A1 cao
		[3]
		7 marks

Question Number	Scheme	Marks
2. (a)	7	B1 cao
		[1]
(b)	$\left(\int_{0}^{4} \left(8 - 2^{x-1}\right) dx \approx \right) \frac{1}{2} \times 1; \times \left\{ \frac{7.5 + 2(\text{"their 7"} + 6 + 4) + 0}{2} \right\}$	B1; <u>M1</u>
	$\left(\int_{0}^{4} \left(8 - 2^{x-1}\right) dx \approx \right) \frac{1}{2} \times 1; \times \left\{\frac{7.5 + 2(\text{"their 7"} + 6 + 4) + 0}{2}\right\}$ $\left\{=\frac{1}{2} \times 41.5\right\} = 20.75 \text{ o.e.}$	A1 cao
		[3]
(c)	Area $(R) = "20.75" - \frac{1}{2}(7.5)(4)$	M1
	= 5.75	A1 cao
		[2]
		6 marks

Question Number	Scheme	Marks
3. (a)	$\{PQ =\} \sqrt{(7-10)^2 + (8-13)^2} \text{ or } \sqrt{(10-7)^2 + (13-8)^2}$ $\{PQ\} = \sqrt{34}$	M1
	$\{PQ\} = \sqrt{34}$	A1
		[2]
(b)	$(x-7)^{2} + (y-8)^{2} = 34 \left(\operatorname{or} \left(\sqrt{34} \right)^{2} \right)$	M1
		A1 oe
		[2]
(c)	{Gradient of radius} = $\frac{13-8}{10-7}$ or $\frac{5}{3}$	B1
	Gradient of tangent $= -\frac{1}{m}\left(=-\frac{3}{5}\right)$	M1
	$y - 13 = -\frac{3}{5}(x - 10)$	M1
	3x + 5y - 95 = 0	A1
		[4]
		8 marks

Question Number	Scheme	Marks
4. (a)	$f\left(-\frac{3}{2}\right) = 6\left(-\frac{3}{2}\right)^3 + 13\left(-\frac{3}{2}\right)^2 - 4 = 5$	M1
		A1 cao
		[2]
(b)	$f(-2) = 6(-2)^3 + 13(-2)^2 - 4 = 0$, and so $(x + 2)$ is a factor.	M1 A1
		[2]
(c)	$f(x) = \{(x+2)\}(6x^2 + x - 2)$	M1 A1
	= (x+2)(2x-1)(3x+2)	M1 A1
		[4]
		8 marks

Question Number	Scheme	Marks
5 (2)	$(2-9x)^4 = 2^4 + {}^4C_1 2^3 (-9x) + {}^4C_2 2^2 (-9x)^2,$	
5. (a)	(b) $f(x) = (1 + kx)(2 - 9x)^4 = A - 232x + Bx^2$	
	First term of 16 in their final series	B1
	At least one of $({}^{4}C_{1} \times \times x)$ or $({}^{4}C_{2} \times \times x^{2})$	M1
	$=(16)-288x+1944x^{2}$	A1 A1
		[4]
(b)	<i>A</i> = "16"	B1ft
		[1]
(c)	$\left\{ (1+kx)(2-9x)^4 \right\} = (1+kx)(16-288x+\{1944x^2+\})$	M1
	<i>x</i> terms: $-288x + 16kx = -232x$	
	giving, $16k = 56 \implies \frac{k = \frac{7}{2}}{2}$	A1
		[2]
(d)	x^2 terms: $1944x^2 - 288kx^2$	
	So, $B = 1944 - 288\left(\frac{7}{2}\right); = 1944 - 1008 = 936$	M1 A1
		[2]
		9 marks

Question Number	Scheme	Marks
6. (i)	$\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$	M1
	$\theta = \left\{ -\frac{2\pi}{15}, \ \frac{8\pi}{15} \right\}$	A1 A1
		[3]
	$4\cos^2 x + 7\sin x - 2 = 0, \ 0,, \ x < 360^\circ$	
(ii)	$4(1 - \sin^2 x) + 7\sin x - 2 = 0$	M1
	$4 - 4\sin^2 x + 7\sin x - 2 = 0$	
	$4\sin^2 x - 7\sin x - 2 = 0$	A1 oe
	$(4\sin x + 1)(\sin x - 2) \{= 0\}$, $\sin x =$	M1
	$\sin x = -\frac{1}{4}, {\sin x = 2}$	A1 cso
	$x = \operatorname{awrt}\{194.5, 345.5\}$	Alft, Al
		[6]
		9 marks

Scheme	Marks
$\left\{ \int \left(3x - x^{\frac{3}{2}} \right) dx \right\} = \frac{3x^2}{2} - \frac{x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} \left\{ + c \right\}$	M1 A1 A1
$0 = 3x - x^{\frac{3}{2}} \implies 0 = 3 - x^{\frac{1}{2}} \text{ or } 0 = x \left(3 - x^{\frac{1}{2}}\right) \implies x = \dots$	M1
$\left\{ \operatorname{Area}(S) = \left[\frac{3x^2}{2} - \frac{2}{5}x^{\frac{5}{2}} \right]_0^9 \right\}$	
$= \left(\frac{3(9)^2}{2} - \left(\frac{2}{5}\right)(9)^{\frac{5}{2}}\right) - \{0\}$	ddM₽
$\left\{ = \left(\frac{243}{2} - \frac{486}{5}\right) - \{0\} \right\} = \frac{243}{10} \text{ or } 24.3$	A1 oe
	[3] 6 marks
	$\left\{ \int \left(3x - x^{\frac{3}{2}} \right) dx \right\} = \frac{3x^2}{2} - \frac{x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} \{+c\}$ $0 = 3x - x^{\frac{3}{2}} \implies 0 = 3 - x^{\frac{1}{2}} \text{ or } 0 = x \left(3 - x^{\frac{1}{2}}\right) \implies x = \dots$ $\left\{ \operatorname{Area}(S) = \left[\frac{3x^2}{2} - \frac{2}{5} x^{\frac{5}{2}} \right]_0^9 \right\}$ $= \left(\frac{3(9)^2}{2} - \left(\frac{2}{5}\right)(9)^{\frac{5}{2}} \right) - \{0\}$

Question Number	Scheme	Marks
8. (i)	$\log_3\left(\frac{3b+1}{a-2}\right) = -1 \qquad \text{or} \log_3\left(\frac{a-2}{3b+1}\right) = 1$	M1
	$\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\}$ or $\left(\frac{a-2}{3b+1} \right) = 3$	M1
	$\{9b+3=a-2 \implies\} b = \frac{1}{9}a - \frac{5}{9}$	A1 oe
(ii)	$32(2^{2x}) - 7(2^x) = 0$	[3] M1
	So, $2^x = \frac{7}{32}$	A1 oe
	$x \log 2 = \log\left(\frac{7}{32}\right)$ or $x = \frac{\log\left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2\left(\frac{7}{32}\right)$	dM1
	x = -2.192645	A1
		[4]
		7 marks

Question Number	Scheme	Marks
9. (a)	Area(<i>FEA</i>) = $\frac{1}{2}x^2\left(\frac{2\pi}{3}\right)$; = $\frac{\pi x^2}{3}$	M1 A1
		[2]
(b)	$\{A = \} \frac{1}{2}x^2 \sin 60^\circ + \frac{1}{3}\pi x^2 + 2xy$	M1 A1
	$1000 = \frac{\sqrt{3}x^2}{4} + \frac{\pi x^2}{3} + 2xy \implies y = \frac{500}{x} - \frac{\sqrt{3}x}{8} - \frac{\pi x}{6}$ $\implies y = \frac{500}{x} - \frac{x}{24} \left(4\pi + 3\sqrt{3}\right) *$	A1 *
		[3]
(c)	$\{P=\} x + x\theta + y + 2x + y \ \left\{= 3x + \frac{2\pi x}{3} + 2y\right\}$	B1ft
	2 $y = +2\left(\frac{500}{x} - \frac{x}{24}\left(4\pi + 3\sqrt{3}\right)\right)$	M1
	$P = 3x + \frac{2\pi x}{3} + \frac{1000}{x} - \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x \implies P = \frac{1000}{x} + 3x + \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x$	
	$\Rightarrow \underline{P = \frac{1000}{x} + \frac{x}{12} \left(4\pi + 36 - 3\sqrt{3} \right)} *$	A1 *
		[3]
(d)	$\frac{\mathrm{d}P}{\mathrm{d}x} = -1000x^{-2} + \frac{4\pi + 36 - 3\sqrt{3}}{12}; = 0$	M1 A1; M1
	$\Rightarrow x = \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \ (= 16.63392808)$	A1
	$\left\{P = \frac{1000}{(16.63)} + \frac{(16.63)}{12} \left(4\pi + 36 - 3\sqrt{3}\right)\right\} \Longrightarrow P = 120.236 \text{ (m)}$	A1
		[5]
(e)	$\frac{\mathrm{d}^2 P}{\mathrm{d}x^2} = \frac{2000}{x^3} > 0 \Longrightarrow \text{Minimum}$	M1 A1ft
		[2]
		15 marks